As of Beijing time The data is from a third-party organization and is only for reference.
For actual information, please refer to:www.eastmoney.com
Address: 20 Maguire Road, Suite 103, Lexington, MA 02421(America)
Tel: +1(626)986-9880
Address: Allia Future Business Centre Kings Hedges Road Cambridge CB4 2HY, UK
Tel: 0044 7790 816 954
Email: marketing@medicilon.com
Address: No.585 Chuanda Road, Pudong New Area, Shanghai (Headquarters)
Postcode: 201299
Tel: +86 (21) 5859-1500 (main line)
Fax: +86 (21) 5859-6369
© 2023 Shanghai Medicilon Inc. All rights reserved Shanghai ICP No.10216606-3
Shanghai Public Network Security File No. 31011502018888 | Website Map
Business Inquiry
Global:
Email:marketing@medicilon.com
+1(626)986-9880(U.S.)
0044 7790 816 954 (Europe)
China:
Email: marketing@medicilon.com.cn
Tel: +86 (21) 5859-1500
Infectious disease preparedness work focuses predominantly on a historical list of pathogens derived from biological warfare agents, political considerations, and recent outbreaks. That fails to account for the most serious agents not currently known or without historical precedent, write scholars from the Johns Hopkins Center for Health Security in a new report on the traits of microorganisms with high pandemic potential.
Researchers from the Johns Hopkins Center for Health Security have published a new report, “The Characteristics of Pandemic Pathogens”, on the traits of microorganisms with high pandemic potential. They say it establishes a framework for identifying naturally occurring microorganisms that pose a global catastrophic biological risk (GCBR) and makes broad recommendations for improving GCBR preparedness efforts. GCBRs are events in which biological agents could lead to a sudden, extraordinary, widespread disaster beyond the collective capability of national and international governments and the private sector to control. No exhaustive catalogue of GCBR culprits exists, leaving the health security community to rely on historical examples (e.g., 1918 Spanish flu pandemic) to guide their preparedness priorities, according to the authors of the report.
“Health security preparedness needs to be adaptable to new threats and not exclusively wedded to historical notions,” said Amesh Adalja, M.D., project lead and senior scholar at the Center. “A more active-minded approach to this problem will, in the end, help guard against a GCBR event occurring.”
To formulate the findings and recommendations in their report, the team reviewed published literature and studies on emerging infectious disease characteristics, the pathogenic potential of microbes, and other related topics. The researchers also interviewed more than 120 technical experts from academia, industry, and government and convened a meeting of a subset of those experts to discuss preliminary analysis of the information the team had gathered.
The first and primary finding presented in the report outlines common characteristics of a potential GCBR-level pandemic pathogen. Its mode of transmission, the team concluded, will most likely be respiratory. It will be contagious during the incubation period, prior to symptom development, or when infected individuals show only mild symptoms. Finally, it will need specific host population factors (e.g., immunologically naïve persons) and additional intrinsic microbial pathogenicity characteristics (e.g., a low but significant case fatality rate) that together substantially increase disease spread and infection.
The report continues its findings with an explanation of the pandemic potential of certain categories of microbes, noting that RNA viruses are the biggest threat. The project team’s preparedness-related findings are reflected in eight key recommendations:
“We hope policymakers and practitioners consider our recommendations in their work to strengthen health sector resilience and fortify pandemic preparedness,” said Dr. Adalja.