As of Beijing time The data is from a third-party organization and is only for reference.
For actual information, please refer to:www.eastmoney.com
Address: 20 Maguire Road, Suite 103, Lexington, MA 02421(America)
Tel: +1(626)986-9880
Address: Allia Future Business Centre Kings Hedges Road Cambridge CB4 2HY, UK
Tel: 0044 7790 816 954
Email: marketing@medicilon.com
Address: No.585 Chuanda Road, Pudong New Area, Shanghai (Headquarters)
Postcode: 201299
Tel: +86 (21) 5859-1500 (main line)
Fax: +86 (21) 5859-6369
© 2023 Shanghai Medicilon Inc. All rights reserved Shanghai ICP No.10216606-3
Shanghai Public Network Security File No. 31011502018888 | Website Map
Business Inquiry
Global:
Email:marketing@medicilon.com
+1(626)986-9880(U.S.)
0044 7790 816 954 (Europe)
China:
Email: marketing@medicilon.com.cn
Tel: +86 (21) 5859-1500
University of Washington (UW) synthetic biologists have taken advantage of synthetic biology to turn yeast cells into building blocks for digital information processing. They built a set of synthetic genes that function in cells like NOR gates, commonly used in electronics, which each take two inputs and only pass on a positive signal if both inputs are negative. NOR gates are functionally complete, meaning one can assemble them in different arrangements to make any kind of information-processing circuit.
The UW engineers did this using DNA instead of silicon and solder and inside yeast cells instead of at an electronics workbench. The circuits are the largest ever published to date in eurkaryotic cells, which, like human cells, contain a nucleus and other structures that enable complex behaviors, according to UW electrical engineering professor Eric Klavins, Ph.D., whose team published its study in Nature Communications (“Digital Logic Circuits in Yeast with CRISPR-dCAS9 NOR Gates”).
“While implementing simple programs in cells will never rival the speed or accuracy of computation in silicon, genetic programs can interact with the cell’s environment directly,” said Dr. Klavins. “For example, reprogrammed cells in a patient could make targeted, therapeutic decisions in the most relevant tissues, obviating the need for complex diagnostics and broad spectrum approaches to treatment.”
Each cellular NOR gate consists of a gene with three programmable stretches of DNA—two to act as inputs and one as the output. The investigators then used CRISPR/Cas9 methodology to target those specific DNA sequences inside a cell. The Cas9 protein acts like a molecular gatekeeper in the circuit, sitting on the DNA and determining if a particular gate will be active or not. If a gate is active, it expresses a signal that directs the Cas9 to deactivate another gate within the circuit. In this way, the researchers can “wire” together the gates to create logical programs in the cell.
What sets the study apart from previous work, researchers said, is the scale and complexity of the circuits successfully assembled, which included up to seven NOR gates assembled in series or parallel.
At this size, circuits can begin to execute useful behaviors by taking in information from different environmental sensors and performing calculations to decide on the correct response, noted Dr. Klavins. Imagined applications include engineered immune cells that can sense and respond to cancer markers or cellular biosensors that can diagnose infectious disease in patient tissue.
These large DNA circuits inside cells are a major step toward an ability to program living cells, the researchers said. They provide a framework in which logical programs can be implemented to control cellular function and state.