As of Beijing time The data is from a third-party organization and is only for reference.
For actual information, please refer to:www.eastmoney.com
Address: 20 Maguire Road, Suite 103, Lexington, MA 02421(America)
Tel: +1(626)986-9880
Address: Allia Future Business Centre Kings Hedges Road Cambridge CB4 2HY, UK
Tel: 0044 7790 816 954
Email: marketing@medicilon.com
Address: No.585 Chuanda Road, Pudong New Area, Shanghai (Headquarters)
Postcode: 201299
Tel: +86 (21) 5859-1500 (main line)
Fax: +86 (21) 5859-6369
© 2023 Shanghai Medicilon Inc. All rights reserved Shanghai ICP No.10216606-3
Shanghai Public Network Security File No. 31011502018888 | Website Map
Business Inquiry
Global:
Email:marketing@medicilon.com
+1(626)986-9880(U.S.)
0044 7790 816 954 (Europe)
China:
Email: marketing@medicilon.com.cn
Tel: +86 (21) 5859-1500
Duke University scientists say they have discovered a method to detect signs of cancer on a cell-by-cell basis using two lasers and a camera. A number of medical devices currently in use and in clinical trials around the world look for increases in cellular stiffness as an indicator of cancerous tissue. These instruments, however, rely on readings from many cells clustered together within the body and cannot operate on a cellular level, according to the researchers.
Medicilon boasts nearly 300 tumor evaluation models. At the same time, we are empowering innovative therapies to comprehensively evaluate and study immuno-oncology. We have completed model establishment and efficacy evaluation of immuno-therapies such as CAR-T, TCR-T, CAR-NK, oncolytic virus, antibody (monoclonal antibody, double antibody, polyclonal antibody, etc.), siRNA, AAV.
Tumor Animal Model Medicilon Has Established:
In a study (“Optical Phase Measurements of Disorder Strength Link Microstructure to Cell Stiffness”) published online in Biophysical Journal, the team describes a technique for assessing an individual cell’s stiffness using patterns that appear within its internal structure. The results show that the more organized its insides, the stiffer the cell. In previous work, Adam Wax, Ph.D., professor of biomedical engineering at Duke, showed that a cell’s internal structures shift as fluids flow around its exterior.
“Think of a cell as a large Jell-O mold with a lot of fruit suspended in it,” said Dr. Wax. “If you blow on it really hard with compressed air, everything is going to move in the direction of the air a little bit.”
He also showed that he could calculate cellular stiffness by measuring the amount of that shift. This discovery had many advantages over traditional methods of measuring the rigidity of a single cell. For example, no physical contact with the cell was required and measurements took much less time.
“Traditional approaches like atomic force microscopy take all day just to prepare a single sample,” said Will Eldridge, a Ph.D. student in Wax’s lab and first author of the paper. “Using a moving liquid to measure shear flow only takes 30 to 40 minutes to image a group of cells.”
Still not satisfied with that timetable, Dr. Wax and Eldridge tried to find a visual metric that could do the same job in less time. In the new study, they show that the amount of disorder found within a cell’s internal structures directly correlates to its stiffness.
To measure cellular disorder, the researchers shine a laser through a cell and compare it to a second, unobstructed beam. The differences in the amount of time it takes for the two lasers to travel through the sample are then analyzed to produce a picture, revealing just how disordered the cell’s internal structures are.
To prove their idea worked, the group measured these “phase disorders” in five different types of live cancer cells just before measuring their stiffness using the already proven “Jell-O mold” technique. As hoped, the two metrics were highly correlated.
“The speed of this technique is only limited by the size of your camera’s field of view,” said Eldridge. “You could potentially measure hundreds of individual cells in a matter of seconds.”
More work is needed to determine the exact relationship between the two measurements, but Dr. Wax is hopeful that the technique could be translated into a new biomedical device for cancer screening.
“It’s widely known that cellular stiffness is an indicator of cancer, but there’s no viable diagnostic tool that can use that knowledge on a cellular scale,” said Dr. Wax. “With this technique, I can see a path to creating a high-throughput system that could quickly and easily screen for cervical, esophageal, or colon cancer, anywhere you could take a tissue scraping.”