As of Beijing time The data is from a third-party organization and is only for reference.
For actual information, please refer to:www.eastmoney.com
Address: 20 Maguire Road, Suite 103, Lexington, MA 02421(America)
Tel: +1(626)986-9880
Address: Allia Future Business Centre Kings Hedges Road Cambridge CB4 2HY, UK
Tel: 0044 7790 816 954
Email: marketing@medicilon.com
Address: No.585 Chuanda Road, Pudong New Area, Shanghai (Headquarters)
Postcode: 201299
Tel: +86 (21) 5859-1500 (main line)
Fax: +86 (21) 5859-6369
© 2023 Shanghai Medicilon Inc. All rights reserved Shanghai ICP No.10216606-3
Shanghai Public Network Security File No. 31011502018888 | Website Map
Business Inquiry
Global:
Email:marketing@medicilon.com
+1(626)986-9880(U.S.)
0044 7790 816 954 (Europe)
China:
Email: marketing@medicilon.com.cn
Tel: +86 (21) 5859-1500
The molecular switches regulating human cell growth do a great job of replacing cells that die during the course of a lifetime. But when they misfire, life-threatening cancers can occur. Research led by scientists at The University of Texas Health Science Center at Houston (UTHealth) has revealed a new electrical mechanism that can control the switches that regulate human cell growth. This information is seen as critical in developing treatments for some of the most lethal types of cancer including pancreatic, colon and lung, which are characterized by uncontrolled cell growth caused by breakdowns in cell signaling cascades, according to the scientists.
The research focused on a molecular switch called K-Ras. Mutated versions of K-Ras are found in about 20% of all human cancers in the U.S. and these mutations lock the K-Ras switch in the on position.
“When K-Ras is locked in the on position, it drives cell division, which leads to the production of a cancer,” said John Hancock, Ph.D., Sc.D., the study’s senior author and chairman of the department of integrative biology and pharmacology at UTHealth Medical School. “We have identified a completely new molecular mechanism that further enhances the activity of K-Ras.”
The team’s study (“Membrane potential modulates plasma membrane phospholoipid dynamics and K-Ras signaling”) appears in Science. It focused on the tiny electrical charges that all cells carry across their limiting (plasma) membrane. “What we have shown is that the electrical potential that a cell carries is inversely proportional to the strength of a K-Ras signal,” said Dr. Hancock.
With the aid of a high-powered electron microscope, the investigators observed that certain lipid molecules in the plasma membrane respond to an electrical charge, which in turn amplifies the output of the Ras signaling circuit. This is exactly like a transistor in an electronic circuit board. Yong Zhou, Ph.D., first author and assistant professor of integrative biology and pharmacology at UTHealth Medical School, said, “Our results may finally account for a long-standing but unexplained observation that many cancer cells actively try to reduce their electrical charge.”
Medicilon boasts nearly 300 tumor evaluation models. At the same time, we are empowering innovative therapies to comprehensively evaluate and study immuno-oncology. We have completed model establishment and efficacy evaluation of immuno-therapies such as CAR-T, TCR-T, CAR-NK, oncolytic virus, antibody (monoclonal antibody, double antibody, polyclonal antibody, etc.), siRNA, AAV.
Tumor Animal Model Medicilon Has Established:Initial work was done with human and animal cells and findings were subsequently confirmed in a fruit fly model on membrane organization.
“This has huge implications for biology,” pointed out Dr. Hancock said. “Beyond the immediate relevance to K-Ras in cancer, it is a completely new way that cells can use electrical charge to control a multitude of signaling pathways, which may be particularly relevant to the nervous system.”