

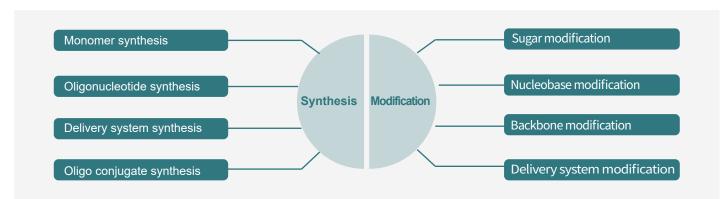
# Medicilon Nucleic Acid Drugs R&D Service Platform

Medicilon nucleic acid drug R&D platform provides an integrated and comprehensive solution that covers drug discovery, CMC and preclinical research services. Oriented with a rigorous scientific approach, an open-minded teamwork spirit and state-of-the-art equipment, our integrated solution will help clients and partners to fulfil their research and development mission for cutting-edge and innovative nucleic acid drugs. Our service platforms include nucleic acid drug discovery, screening and preclinical research services of pharmacology, DMPK and toxicity study for both pharmaceutical companies and academic research institutions.

# Popular Types of Nucleic Acid Drugs

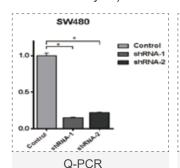
ASO

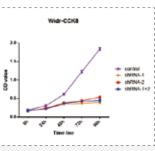
siRNA


**mRNA** 

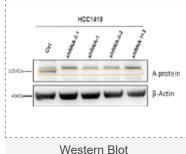
**Aptamer** 

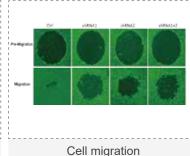
# **Advantages of Nucleic Acid Drugs**


Attributed by its fast and intuitive design of base sequences, the development of nucleic acid drugs is featured with simple materials, convenient preparation processes and affordable production costs, which will greatly shorten the drug development cycle, making it possible to customize individual treatment plans. Hence, it offers a feasible solution for rare diseases and other problems currently plagued.

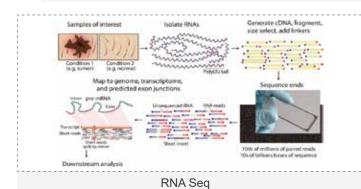

# **Synthesis & Chemical Modifications of Nucleic Acid Drugs**

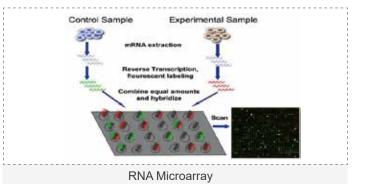



# Bioactivity Screening of Nucleic Acid Drugs —


- Evaluation of binding between siRNA-GALNAc and targeted liver cells (ELISA, SPR, FP, FACS, MSD, Confocal microscope)
- Evaluation of decrease in target mRNA/protein level (RT-PCR, WB)
- Evaluation of cell phenotypes and functional regulation (Cell proliferation, Migration, Proteomics, and Transcriptome analysis).







Cell proliferation





- Evaluation of off-target effect
  - Searching for potential off-target mRNA/protein in the database, such as NCBI, nucleotide BLAST.
  - Unbiased analysis applying RNAseq, RNA Microarray, or targeted panel analysis using Nanostring.





# **Process R&D of Nucleic Acid Drugs**

Select starting materials



Choose starting materials with traits like easy to purchase, mild toxicity, good quality stability.

Process R&D of nucleic acid

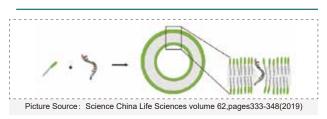


Develop stable and green synthesis routes with low cost and high security.

**Quality Control** 

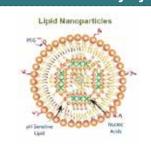


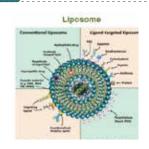
Up-to-date quality control system with complete technical standard.

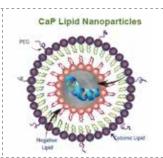

Select starting materials

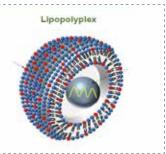


End to end service ensuring smooth transfer.

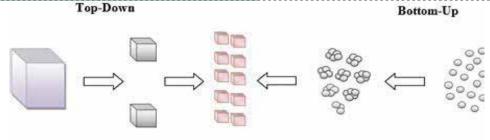

# **Nucleic Acid Drugs Preparation Study**


Due to their low immunogenicity, biocompatibility, and high encapsulation efficiency for oligonucleotide molecules, lipids and their derivatives have become the go-to delivery systems for nucleic acid drugs that have attracted much attention in recent years. The system is positively charged in the physiological environment.





The negatively charged nucleic acid molecules are encapsulated by electrostatic action, and the positively charged surface can also help the entire carrier system to combine with the cell membrane of the target cell, thereby playing a delivery role.

#### **Common delivery systems**










#### Medicilon's preparation methods of nanoparticles



Ball milling, high-pressure homogenization, ultrasound, extruding

Solvent volatilization, precipitation, T-tube, microfluidics

#### Traits of successful delivery systems

Easily modified, easily synthesized, easily produced. The on-target and off-target ratio of delivery should be within an acceptable range. The effective dose must be significantly lower than the toxic dose. The bioactivity of the nucleic acid should be consistent from batch to batch. In most clinical cases, repeated administration does not result in loss of efficacy or safety.

### Medicilon's nanoparticle R&D lab



Spray dryer



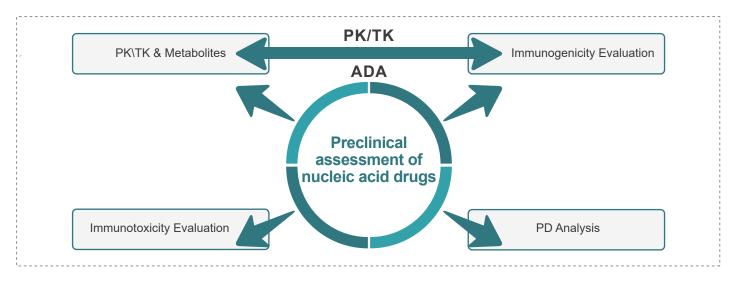
Agilent InfinityLab Bio LC



Thermo U3000+CAD detector Thermo



Agilent biological analyze




ZETA nanoparticle Potentiostat

Nucleic acid lipid system R&D

- Formulation: drug to lipid ratio, solvent screening, aqueous to organic solvent ratio
- Process: Preparation methods
- Stability
- Dosage form screening

# **Bioanalysis of Nucleic Acid Drugs**



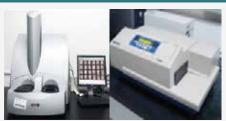
| PK/TK<br>Analysis                            | <ul> <li>Molecular hybridization-enzyme assay (H-ELISA)</li> <li>Molecular hybridization-electrochemiluminescence analysis (H-ECL)</li> <li>Reverse transcription fluorescence quantitative PCR (RT-qPCR)</li> <li>Quantitative PCR (qPCR)</li> <li>Digital Microdrop (ddPCR)</li> <li>LC-MS/MS Platform</li> </ul> |
|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Immunogenicity<br>Analysis                   | <ul> <li>Total Anti-Drug Antibody (ADA) Assay: MSD</li> <li>Neutralizing antibody (Nab) analysis: CLBA or Cell-based Assay</li> </ul>                                                                                                                                                                               |
| PD or<br>TOX-related<br>Cytokine & Biomarker | Singleplex (based on various LBA technologies)     Multiplex (Luminex, MSD, FACS CBA technologies)     FACS                                                                                                                                                                                                         |

# **❖** Solutions for Nucleic Acid Drugs Bioanalysis

#### LC-MS/MS/HRMS Platform



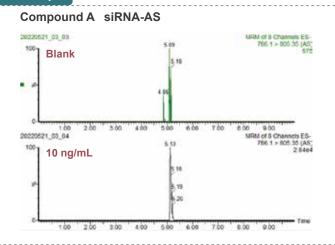


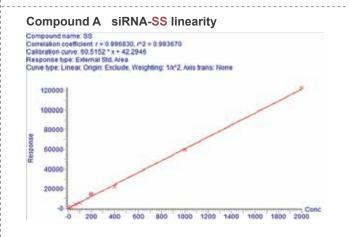

- · High specificity
- High sensitivity: ng level
- Advantages: end product detectable

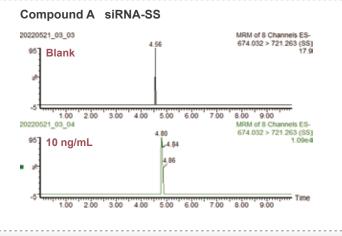
#### qPCR/ddPCR Platform



- High specificity
- Sensitivity: Detectable within 1 log copy
- Advantage: More Sensitive


# Hybridization-EIA/ECL Platform



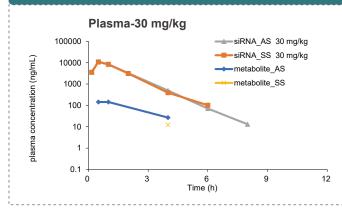


- · Sensitivity: pM level
- Advantages: variable marking strategy; personalized reaction strategy.

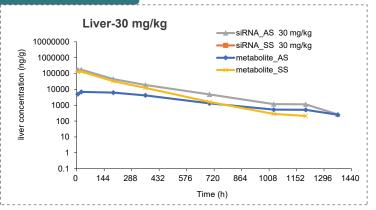
#### Medicilon case: siRNA plasma quantification (LC-MS/MS)

# Compound A siRNA-AS linearity Compound name: 45 (1) Correlation coefficient r = 0.996518, r/2 = 0.993049 Cylibration curve: 148 221 \* x - 47.9015 Response hype: External Std. Area Curve hype: Linear, Origin: Exclude, Weighting: 1/x\*2, Axis trans: None 300000 250000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000 50000









Sensitivity: 1-10 ng/mL

20 µL plasma

- 1344 injections (runs)
  - Good reproducibility
- CV< 10%</li>
- LC-MS/MS
- 1 ng/mL feasible by MS

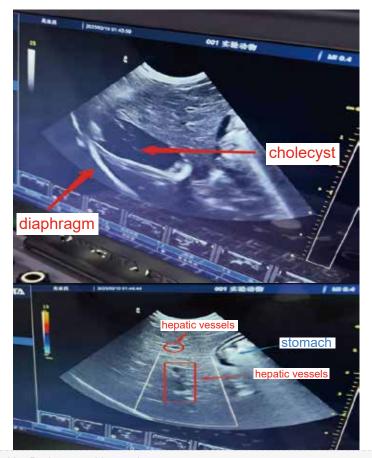
#### Medicilon case: siRNA and metabolite in rodent plasma and liver





| Administration | Dose Level | Analyte  | AUC <sub>last_liver</sub> | AUC <sub>last_Plasma</sub> | AUC <sub>last_liver</sub> /AUC <sub>last_Plasma</sub> |
|----------------|------------|----------|---------------------------|----------------------------|-------------------------------------------------------|
| Route          | mg/kg      | Allalyte | hr*ng/g                   | hr*ng/g                    | AUClast_liver/AUClast_Plasma                          |
| SC             | 30         | siRNA_AS | 32976645                  | 17893                      | 1843                                                  |
| SC             | 300        | siRNA_AS | 94450628                  | 219970                     | 429                                                   |

# **Pharmacokinetics Research of Nucleic Acid Drugs**


# **❖** Medicilon Liver Biopsy Guided By B-ultrasound In Cynomolgus Monkeys Platform

The development of gene therapy and nucleic acid drugs has made the establishment of monkey models and related research a hot topic. Due to the high similarity of genetic, morphological, physiological and biochemical characteristics with humans, non-human primates, especially cynomolgus monkeys, are closest to humans in terms of evolution, and have outstanding advantages in model construction, disease mechanism research, and drug development. Many disease models have been established so far.

In the long-term dynamic experimental observation of the changes in the liver disease model of cynomolgus monkeys, due to the limitations of animal disease models and experimental objective conditions, researchers mostly obtain liver tissue pathological analysis and diagnosis of these disease models through blind puncture or surgical sampling, which not only causes great trauma to animals, complicated postoperative care, but also easily leads to various complications, which is not conducive to long-term observation of disease models.

The Medicilon Liver Biopsy Guided By B-ultrasound In Cynomolgus Monkeys Platform can avoid the large blood vessels and gallbladder to the greatest extent, and has the advantages of less trauma, safe and simple puncture operation, accurate positioning, and better postoperative recovery. Medicilon Liver Biopsy Guided By B-ultrasound In Cynomolgus Monkeys Platform can dynamically display the whole process of biopsy needle insertion and material collection in real time, which greatly improves the success rate of puncture and the accuracy of experimental results. At the same time, it can be used for the preclinical PK evaluation of gene therapy drugs, which also promotes the improvement of experimental animal welfare, and provides accurate pathological basis for the dynamic monitoring and modeling progress of various liver disease models.





Liver biopsy guided by B-ultrasound in monkeys

## **♥** Oligonucleotide: Monkey liver biopsy validation

Day 3

10~20 mg/puncture needle

The 1st liver biopsy

**Collection amount:** 

**Dosing** 

**Day 14** 

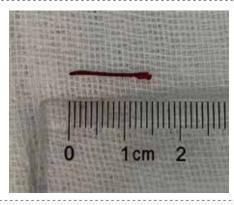
10~20 mg/puncture needle

The 2<sup>nd</sup> liver biopsy

**Collection amount:** 

Day 28

The 3<sup>rd</sup> liver biopsy **Collection amount:** 


10~20 mg/puncture needle

Day 56

The 4th liver biopsy **Collection amount:** 

10~20 mg/puncture needle







Biopsy gun & needle

## Oligonucleotide: Monkey liver biopsy validation (surgery)

Day 1

The 1st liver biopsy **Collection amount:** ~80-100 mg

Day 15

The 2<sup>nd</sup> liver biopsy Collection amount: ~80-100 mg

**Day 29** 

The 3rd liver biopsy **Collection amount:** ~80-100 mg

Day 43

The 4th liver biopsy **Collection amount:** ~80-100 mg



#### Surgery liver collection strategies:

recovery time between samples: 2-3 weeks (according to collection times) monkey body weight: 3-6 kg

# Oligonucleotide: Monkey muscle biopsy validation

Day 1

Day 7

Day 9

**Day 11** 

**Day 14** 

The 1st biopsy

Collection site: Right quadriceps

The 2<sup>nd</sup> biopsy

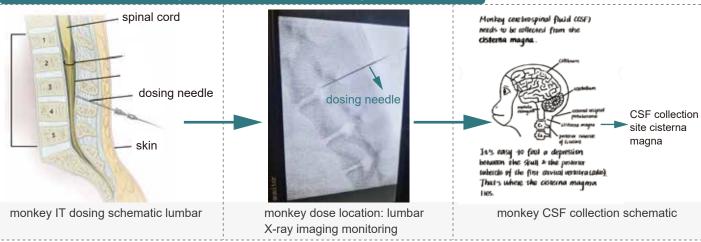
Collection site: Right quadriceps surgical instruments: surgical scissors surgical instruments: scalpel

The 3rd biopsy

Collection site: Right quadriceps surgical instruments: biopsy punch

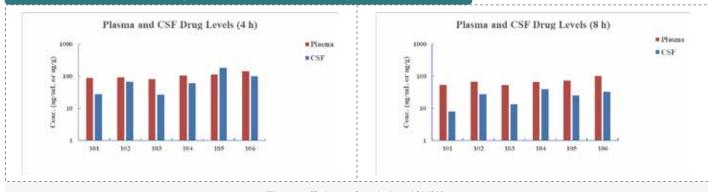


#### Animals:


select suitable animals,

body weight (monkey 3-6 kg; Dogs 8-12 kg)

## Medicilon Case: siRNA monkey PK/PD study


| Compound             | Monkey Matrix                           | Animal Number | BA Assay                                                                                           |                                                 |
|----------------------|-----------------------------------------|---------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------|
| siRNA<br>IV infusion | Plasma<br>Muscle biopsy<br>Liver biopsy | N=2           | <ul><li>Cytokine study</li><li>Complement study</li><li>Lipid study</li><li>Cir-luc mRNA</li></ul> | IHC slide<br>hELISA study<br>MSTN Protein       |
|                      | Plasma<br>Muscle biopsy                 | N=2           | <ul><li>hELISA study</li><li>NHP mRNA</li><li>NHP MSTN Protein</li></ul>                           | IHC slide<br>Cytokine study<br>Complement study |

## Medicilon Case: Monkey IT validation work flow by concentration



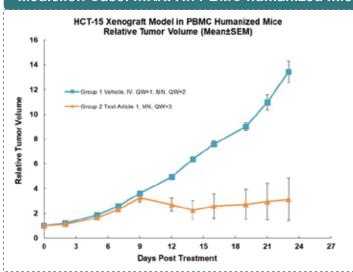
| Group No. | Test Material | Dose Level  | Route & Regimen          | Dose Rate                                  | Plasma & CSF Collection  |
|-----------|---------------|-------------|--------------------------|--------------------------------------------|--------------------------|
| 1         | MED-002       | 6 mg/Monkey | IT on Day 1<br>6 monkeys | 2 mL (Infusion, 3 min)<br>Location: Lumbar | Post-dose at 4 h and 8 h |

#### Medicilon Case: Monkey IT validation results by concentration



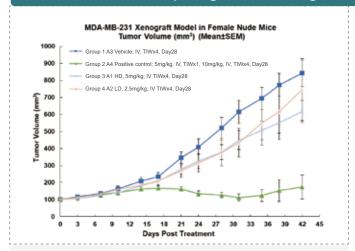
The coefficient of variation (CV%)

| Group No. | Test Material | Dose Level  | Route & Regimen          | Dose Rate                                  | Plasma & CSF Collection  |
|-----------|---------------|-------------|--------------------------|--------------------------------------------|--------------------------|
| 1         | MED-002       | 6 mg/Monkey | IT on Day 1<br>6 monkeys | 2 mL (Infusion, 3 min)<br>Location: Lumbar | Post-dose at 4 h and 8 h |


# **Pharmacology Evaluation of Nucleic Acid Drugs**

Medcilon provides mature models for evaluating the efficacy of antibodies *in vivo*. Our animal models are all established and maintained under the regulation of AAALAC. Pharmacology studies are conducted according to GLP-like standards. At present, more than 300 tumor evaluation models in six categories have been established by **Medicilon**.

#### Various laboratory animal

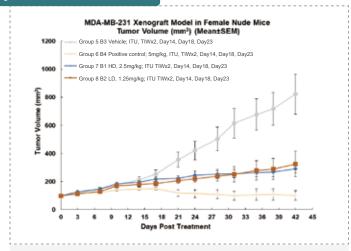

- Rodents: Mouse/Rat. Rabbit
- Non-Rodents: Beagle Dog, Mini Pig, Non-human Primate

#### Medicilon Case: mRNA in PBMC humanized mice



- Animals: Female NOG mice
- Tumor Cells: HCT15, 2x10<sup>6</sup>/mouse
- **PBMC:** 5x10<sup>6</sup>/mouse
- Treatment: Intracutaneous injection

#### Medicilon Case: Comparing different drug delivery methods of mRNA




Animals: Female BALB/c Nude mice Cells: MDA-MB-231, 5x10<sup>6</sup>/mouse

Model Establishment: Right flank SC injection

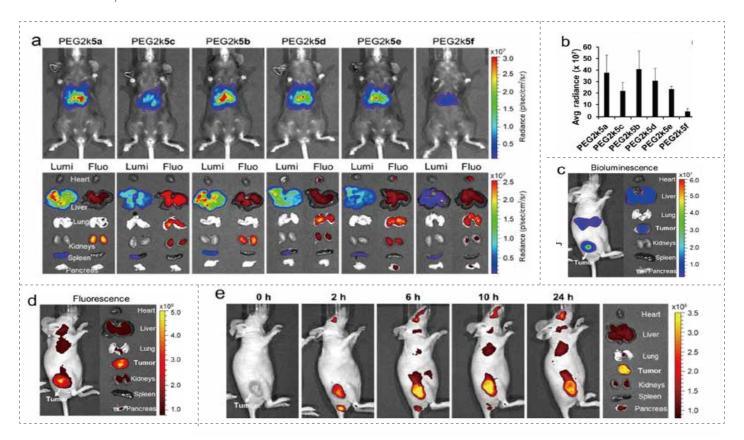
Treatment: IV injection; TIW (three times a week);

Group3, 4: mRNA (LNP) group.

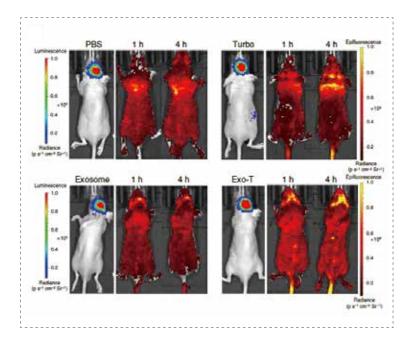


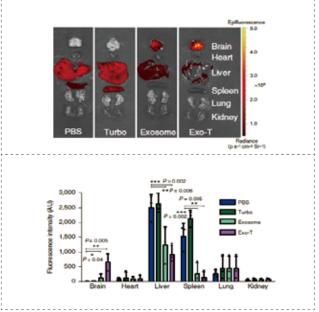
Animals: Female BALB/c Nude mice

Cells: MDA-MB-231, 5x106/mouse


Model Establishment: Right flank SC injection

Treatment: Intratumor injection; TIW (three times


a week); Group 7, 8: mRNA (LNP) group.


## Medicilon Case: In vivo imaging to study the in vivo distribution of nucleic acid drugs

- Dendrimer LNP
- Luc mRNA; IV and intra-tumoral



- CNP-generated exosome
- Delivery of PTEN mRNA by Glioma-directed Exosome EXO-T,IV





# **♥** CDX Models

| Cancer Type              | Cell Line                                                                                                                                                                                                                                                                                  |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Brain cancer             | CHP-212, LN-229, U-87 MG, U-251 MG                                                                                                                                                                                                                                                         |
| Breast cancer            | BT474, HCC70, HCC1569, HCC1806, HCC1954, JIMT-1, MCF7, MDA-MB-231, MDA-MB-436, MDA-MB-468, MX-1, SUM 149PT, ZR-75-1                                                                                                                                                                        |
| Cervix                   | Hela, SiHa                                                                                                                                                                                                                                                                                 |
| Colon cancer             | COLO 205, DLD-1, HCT-8, HCT-15, HCT-116, HT-29, LIM-1215, LoVo, Ls174T, NCI-H508, RKO, SW48, SW480, SW620, SW837                                                                                                                                                                           |
| Endometrium              | AN3 CA, HEC-1-A, HEC-1-B, RL95-2                                                                                                                                                                                                                                                           |
| Esophageal               | KYSE-520                                                                                                                                                                                                                                                                                   |
| Fibrosarcoma/Soft tissue | HT-1080                                                                                                                                                                                                                                                                                    |
| Gastric cancer           | Hs 746T, MKN-45, NCI-N87, NUGC-4, SNU-16                                                                                                                                                                                                                                                   |
| Head and neck cancer     | CAL-27, Detroit562, FaDu, TT                                                                                                                                                                                                                                                               |
| Leukemia                 | CCRF-CEM, HEL, HL-60, Jurkat E6.1, JVM-3,K-562, MOLM-13, MOLM-16, MOLT-3, MOLT-4, MV-4-11, OCI-AML-3, TF-1a, THP-1, U-937                                                                                                                                                                  |
| Liver cancer             | HCCLM3, Hep G2, HuH-7                                                                                                                                                                                                                                                                      |
| Lung cancer              | A427, A549, Calu-1, Calu-3, Calu-6, DMS114, EBC-1, HCC827, MOTO-211H, NCI-H69, NCI-H292, NCI-H358, NCI-H460, NCI-H520, NCI-H522, NCI-H526, NCI-H727, NCI-H820, NCI-H1299, NCI-H1373, NCI-H1568, NCI-H1581, NCI-H1650, NCI-H1703,NCI-H1975, NCI-H2122, NCI-H2228, NCI-H3122, NCI-H3255, PC9 |
| Lymphoma                 | Daudi, DB, DOHH2, HH, JeKo-1, Karpas299, MAVER-1, Mino, OCI-LY10, OCI-LY19, Raji, RL, SR, SU-DHL-1, SU-DHL-2, SU-DHL-4, SU-DHL-6, TMD-8, WSU DLCL2                                                                                                                                         |
| Melanoma                 | A375, C32                                                                                                                                                                                                                                                                                  |
| Myeloma                  | MM.1R, MM.1S, NCI-H929, OPM-2, RPMI-8226                                                                                                                                                                                                                                                   |
| Osteosarcoma             | SJSA-1                                                                                                                                                                                                                                                                                     |
| Ovary                    | A2780, OVCAR-3, OVCAR-8, PA-1, SK-OV-3                                                                                                                                                                                                                                                     |
| Pancreatic cancer        | AsPC-1, Bx PC-3, Capan-1, Capan-2, CFPAC-1, HPAF-II, Mia PaCa-2, PANC-1, SU.86.86, SW1990                                                                                                                                                                                                  |
| Prostate                 | 22RV1, DU145, LnCap, LNCaP-F877L mut, PC-3, Vcap                                                                                                                                                                                                                                           |
| Renal cancer             | 786-O, A498, ACHN, OS-RC-2                                                                                                                                                                                                                                                                 |
| Skin cancer              | A-431                                                                                                                                                                                                                                                                                      |
| Urinary bladder cancer   | 5637, HT1376, RT4, UM-UC-3                                                                                                                                                                                                                                                                 |

## **♥ PDX Models**

| Cancer Type            | Cell Line                                                                                       |
|------------------------|-------------------------------------------------------------------------------------------------|
| Breast cancer          | 201B, 203B                                                                                      |
| Cervix                 | 371Ce                                                                                           |
| Colon cancer           | 002C, 008C, 011C, 013C, 015C, 016C, 020C, 021C, 057C, 058C, 059C, 060C, 061C, 062C, 064C, 065C, |
|                        | 069C, 070C, 072C, 075C, 076C, 084C, 087C, 088C, 095C, 102C, 104C, 110C, 116cC, 117C, 128C, 143C |
| Endometrium            | 361En                                                                                           |
| Esophagus cancer       | 341Es                                                                                           |
| Gastric cancer         | 091Ga, 092Ga, 122Ga, 126Ga, 142Ga, 145Ga, 254Ga, 256Ga, 258Ga, 259Ga, 381Ga                     |
| Head and neck cancer   | 281T, 285HN, 284HN, 286HN                                                                       |
| Leukemia               | 291Le, 292Le, 293Le, 294Le, 295Le                                                               |
| Liver cancer           | 212Li, 213Li, 214Li, 216Li                                                                      |
| Lung cancer            | 028Lu, 047Lu, 050Lu, 053Lu, 054Lu, 263Lu, 264Lu, 265Lu, 267Lu                                   |
| Lymphoma               | 244Ly, 245Ly                                                                                    |
| Myeloma                | 321Bm                                                                                           |
| Ovary                  | 2710, 2720, 2730, 2740                                                                          |
| Pancreatic cancer      | 221Pa, 222Pa, 223Pa, 224Pa, 225Pa, 226Pa, 228Pa                                                 |
| Prostate               | 351Pr, 353Pr, 354Pr, 355Pr                                                                      |
| Renal cancer           | 301R, 303R, 304R                                                                                |
| Sarcoma                | 332Sa, 333Sa, 334Sa                                                                             |
| Urinary bladder cancer | 232U, 234U, 235U, 236U                                                                          |

# **♥** Syngeneic Models

| Cancer Type     | e Cell Line                             |
|-----------------|-----------------------------------------|
| Brain cancer    | Neuro-2a                                |
| Breast cancer   | 4T1, EMT6, EO771, JC                    |
| Colon cancer    | Colon26, CT26.WT, MC-38                 |
| Leukemia        | C1498, L1210, WEHI-3                    |
| Liver cancer    | H22                                     |
| Lung cancer     | KLN205, LLC1, M109                      |
| Lymphoma        | A20, E.G7-OVA, EL4, L5178-R             |
| Mastocytoma     | P815                                    |
| Melanoma        | B16, B16-F0, B16-F10, Clone-M3, YUMM1.7 |
| Myeloma         | J558                                    |
| Pancreas cancer | KPC, Panc 02                            |
| Prostate        | RM-1                                    |
| Renal cancer    | RENCA                                   |
| Sarcoma         | S180, WEHI-164                          |
| Urinary bladder | MB49                                    |
| cancer          |                                         |

## **♥** Humanized Models (PBMC, HSC CD34<sup>+</sup>)

| Cancer Type       | Cell Lines                                     |
|-------------------|------------------------------------------------|
| <b>.</b>          |                                                |
| Brain cancer      | U-87 MG                                        |
| Breast cancer     | HCC70, HCC1954, JIMT-1, MDA-MB-231, MDA-MB-468 |
| Colon cancer      | HT-15, HT29, LoVo, Ls174T                      |
| Gastric cancer    | NCI-N87, NUGC-4                                |
| Leukemia          | MOLM-13, THP-1                                 |
| Liver cancer      | Hep G2, HuH-7                                  |
| Lung cancer       | A549, HCC827, NCI-H292, NCI-H838, NCI-H1975    |
| Lymphoma          | Raji, TMD8                                     |
| Melanoma          | A375                                           |
| Myeloma           | MM.1S, NCI-H929, RPMI-8226                     |
| Ovarian cancer    | OVCAR-3                                        |
| Pancreatic cancer | Capan-2                                        |
| Renal cancer      | 786-O, A498                                    |
| Skin cancer       | A431                                           |
| Urinary bladder   | UM-UC-3                                        |
| cancer            |                                                |

## **♥** Orthotopic Models

| Cancer Type            | Orthotopic Model (Human)                                  | Orthotopic Model (Mouse) |
|------------------------|-----------------------------------------------------------|--------------------------|
| Brain cancer           | LN299-luc, U87-MG-luc, U251-luc                           | G261-luc                 |
| Breast cancer          | BT-474-luc, MCF-7-luc,MDA-MB-231-luc                      | 4T1-luc                  |
| Colon cancer           | HCT-116-luc, HT29-luc                                     | MC38-luc                 |
| Gastric cancer         | NCI-N87-luc                                               | 1                        |
| Leukemia               | K562-luc, MOLM-13-luc, MV-4-11-luc, Nalm-6-luc, THP-1-luc | 1                        |
| Liver cancer           | HuH-7-luc, Hep G2-luc                                     | H22-luc                  |
| Lung cancer            | A549-luc, NCI-H460, NCI-H1650-luc, NCI-H1975-luc          | LLC1-luc                 |
| Lymphoma               | Raji-luc, JeKo-1-luc                                      | 1                        |
| Melanoma               | A375-luc                                                  | B16-F10-luc              |
| Myeloma                | NCI-H929-luc, MM.1S-luc, OPM-2-luc                        | 1                        |
| Ovary                  | OVCAR-3-luc, SK-OV-3-luc                                  | 1                        |
| Pancreatic cancer      | Mia-Paca 2-luc, PANC-1-luc                                | Panc 02-luc              |
| Prostate               | PC-3-luc                                                  | 1                        |
| Renal cancer           | A498-luc                                                  | 1                        |
| Sarcoma                | HT1080-luc, SJSA-1-luc                                    | 1                        |
| Urinary bladder cancer | UM-UC-3-luc                                               | MB49-luc                 |

Luciferase Cell Line

G261-luc, 4T1-luc, MC38-luc, H22-luc, B16-F10-luc, LLC1-luc



#### **MEDICILON**

Email: marketing@medicilon.com Website: www.medicilon.com Tel: +1 (626) 986-9880

**Global Headquarters:** 585 Chuanda Road, Pudong, Shanghai, 201299, China **US Laboratory:** 20 Maguire Road, Suite 103, Lexington, MA 02421, USA